Influence of the dynamic positions of cations on the structure of the DNA minor groove: sequence-dependent effects.

نویسندگان

  • D Hamelberg
  • L D Williams
  • W D Wilson
چکیده

Different models for minor groove structures predict that the conformation is essentially fixed by sequence and has an influence on local ion distribution or alternatively that temporal positions of ions around the minor groove can affect the structure if they neutralize cross-strand phosphate charges. Our previous studies show that the minor groove in an AATT dodecamer responds to local sodium ion positions and is narrow when ions neutralize cross-strand phosphate-phosphate charges [J. Am. Chem. Soc. 2000, 122, 10513-10520]. Previous results from a number of laboratories have shown that G-tracts often have a wider minor groove than A-tracts, but they do not indicate whether this is due to reduced flexibility or differences in ion interactions. We have undertaken a molecular dynamics study of a d(TATAGGCCTATA) duplex to answer this question. The results show that the G-tract has the same amplitude of minor groove fluctuations as the A-tract sequence but that it has fewer ion interactions that neutralize cross-strand phosphate charges. These results demonstrate that differences in time-average groove width between A- and G-tracts are due to differences in ion interactions at the minor groove. When ions neutralize the cross-strand phosphates, the minor groove is narrow. When there are no neutralizing ion interactions, the minor groove is wide. The population of structures with no ion interactions is larger with the GGCC than with the AATT duplex, and GGCC has a wider time-average minor groove in agreement with experiment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of a neutralized phosphate backbone on the minor groove of B-DNA: molecular dynamics simulation studies.

Alternative models have been presented to provide explanations for the sequence-dependent variation of the DNA minor groove width. In a structural model groove narrowing in A-tracts results from direct, short-range interactions among DNA bases. In an electrostatic model, the narrow minor groove of A-tracts is proposed to respond to sequence-dependent localization of water and cations. Molecular...

متن کامل

Structure of the potassium form of CGCGAATTCGCG: DNA deformation by electrostatic collapse around inorganic cations.

The potassium form of d(CGCGAATTCGCG) solved by X-ray diffraction to 1.75 A resolution indicates that monovalent cations penetrate the primary and secondary layers of the "spine of hydration". Both the sodium [Shui, X., McFail-Isom, L., Hu, G. G., and Williams, L. D. (1998) Biochemistry 37, 8341-8355] and the potassium forms of the dodecamer at high resolution indicate that the original descrip...

متن کامل

Surprising roles of electrostatic interactions in DNA-ligand complexes.

The positions of cations in x-ray structures are modulated by sequence, conformation, and ligand interactions. The goal here is to use x-ray diffraction to help resolve structural and thermodynamic roles of specifically localized cations in DNA-anthracycline complexes. We describe a 1.34 A resolution structure of a CGATCG(2)-adriamycin(2) complex obtained from crystals grown in the presence of ...

متن کامل

Locating monovalent cations in the grooves of B-DNA.

Here we demonstrate that monovalent cations can localize around B-DNA in geometrically regular, sequence-specific sites in oligonucleotide crystals. Positions of monovalent ions were determined from high-resolution X-ray diffraction of DNA crystals grown in the presence of thallium(I) cations (Tl(+)). Tl(+) has previously been shown to be a useful K(+) mimic. Tl(+) positions determined by refin...

متن کامل

Intrusion of Counterions into the Spine of Hydration in the Minor Groove of B-DNA: Fractional Occupancy of Electronegative Pockets

A sequence of ordered solvent peaks in the electron density map of the minor groove region of ApT-rich tracts of the double helix is a characteristic of B-form DNA well established from crystallography. This feature, termed the “spine of hydration”, has been discussed as a stabilizing feature of B-DNA, the structure of which is known to be sensitive to environmental effects. Nanosecond-range mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 123 32  شماره 

صفحات  -

تاریخ انتشار 2001